Taq polymerase errors in PCR: Frequency and management

Xavier Foissac, UMR Fruit Biology and Pathology, INRA and University of Bordeaux
Taq polymerase

- DNA polymerase purified from *Thermus aquaticus* a bacterium living in hot springs
 - replicates DNA by incorporating dNTPs on 3’ OH end on a primer hybridized to a DNA matrix
 - Mg$^{2+}$ is a co-factor
 - Optimal temperature for activity 72 °C
- Purified in 1976 by Chien and colleagues
- Nowadays purified from recombinant *Escherichia coli*
- Replication rate of 35-100 nucleotides per second (Wittver *et al.*, 1991 *Biotechniques*)
Accuracy of polymerases

• Accuracy of polymerase = number of adequate nucleotide incorporated / total nucleotides
 • Also called fidelity

• Error frequency = number of misincorporated nucleotide / total nucleotides
 • ranges from 10^{-6} (high fidelity) to 10^{-4} (low fidelity) per incorporated nucleotide
 • Measured by reversion of mutants (opal lacZ mutant for example) or sequencing

• Important for cloning error-free coding sequences for heterologous expression or for variability studies
Errors of \textit{Taq} polymerase: frequency and distribution

- Well studied by Chen and colleagues (1991, Mutation Research)

- Topic: mutations in the human adenine phosphoribosyltransferase genes = HPTR deficiency that cause a kidney disease

1. Cloning and sequencing of HPRT gene from human DNA library (reference sequence)
2. Cloning of HPRT PCR products and sequencing of 5 clones per patient from 5 patients

3. The five independent sequences showed discrepancies: 44 for 58 kbp when compared between each others = errors introduced by PCR

4. No errors were found in 5 out of 25 clones sequenced, one clone contained 5 errors
Errors of *Taq* polymerase: frequency and distribution

6. As PCR were of 30 cycles, **absolute error frequency was** \(2.5 \times 10^{-5}\) per nucleotide leading to 0.76 errors per kb after 30 cycles, 4 times lower than that reported by Tindall and Kunkel (1988, Biochemistry).

7. Statistical analysis showed that occurrence of errors followed the Poisson distribution (\(\chi^2 = 0.892, P=0.05\)).

8. In addition errors were randomly distributed.

9. All were substitutions: 38/44 were transitions (T→C, A→G or C→T, G→A), 6 were transversions (A→C, A→T, C→A, C→G).

10. No insertion or deletion observed but reported in other studies at low frequency.
Management of Taq polymerase errors

1. Solution: direct sequencing of PCR products

- Errors randomly distributed: for a given base the majority of nucleotides correspond to the true sequence \rightarrow errors are in the background of sequencing

```
C
C
C
C
C
C
C
T
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
```

True sequence

error
Management of Taq polymerase errors

2. Due to bad sequencing or double pics in sequence (mixte infection): cloning is unavoidable
 - Random cloning: each insert of about 1,000 bp will contain on average one error
 - The consensus of n sequences will constitute the true sequence (n > 2)

```
C

C

C

C

C

C

C

T

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

```
Management of Taq polymerase errors

Practical training: what is the true sequence of the following insert sequences obtained after nested PCR and cloning into an *E. coli* plasmid?

TGTTAAATCAGATACCTAGGGATACTACAGTT
TTTTAAATCAGATACCTAGGGATACTAGAGTT
TTTTAAATCAGATTTCCCTAGGGATACTAGAGTT
ATTTAAATCAGATACCTAGGGATACTAGAGTT
TTTTAAATCAAATACCTAGGGATACTAGAGTT
TTTTAAATCAGATACCTAGGGATACTAGAGTT
TTTTACTCAGATACCTAGGGATACTAGAGTT
TTTTAAATCGGGTACCTAGGGATACTAGAGTT
TTTTAAATCGGGTACCTAGGGATACTAGAGTT
TTTTAAATCGGGTACCTAGGGATACTAGAGTT
TTTTAAATCGGGTACCTAGGGATACTAGAGTT
TTTTAAATCGGGTACCTAGGGATACTAGAGTT
TTTTAAATCGGGTACCTAGGGATACTAGAGTT
TTTTAAATCGGGTACCTAGGGATACTAGAGTT
TTTTGATCAGATACCTAGGGATACTAGAGTT
TTTTAAATCAGATACCTAGGGATACTAGATTT
Management of Taq polymerase errors in population studies

- Mixed infections or two copies of a gene, like divergent 16S rDNA genes

One population of 2 variants with relative incidence of 50% each

Errors of Taq polymerase
Management of Taq polymerase errors in population studies

- Mixed infections or two copies of a gene (variants), like divergent 16S rDNA genes

One population of 2 variants with relative incidence of 50 % each

Errors of Taq polymerase

Conclusion?

Position 1: C = true
Position 2: G = true, T = error or variant?
Position 3: G/T/A error or variant?
Management of Taq polymerase errors in population studies

- Mixed infections or two copies of a gene, like divergent 16S rDNA genes

One population of 2 variants with relative incidence of 50% each

Errors of Taq polymerase

Conclusion?

Position 1: C = true
Position 2: G = true variant, T = error or variant?
Position 3: G = true variant, T/A error or variant?
Management of Taq polymerase errors in population studies

- Mixed infections or two copies of a gene, like divergent 16S rDNA genes

One population of 2 variants with relative incidence of 50% each

C	G	G
C	G	G
C	G	G
C	T	T
C	A	T
A	T	T
C	G	G
C	G	A
C	T	T
C	T	T
C	G	G

Errors of Taq polymerase

Conclusion?

Position 1: C = true
Position 2: G = true variant, T/A = error or variant?
Position 3: G and T = true variants, A = error
Management of Taq polymerase errors in population studies

- Mixed infections or two copies of a gene, like divergent 16S rDNA genes

One population of 2 variants with relative incidence of 50% each

Errors of Taq polymerase

Conclusion?

Position 1: C=true
Position 2: G and T=true variants, A=error
Position 3: G and T=true variants, A=error
Management of Taq polymerase errors in complex populations

• If n variants of similar relative incidence in the population, probability to randomly sequence each of the variant follow the statistical law: Poisson distribution

\[P_o = e^{-m} \]

- \(P_o \) is the probability that a variant sequence is missed
- \(m \) is the number of times the variability needs to be covered

If \(P_o = 0.05 \) \(\Rightarrow \) 5% chance to miss one variant, \(m=3 \): so 3n sequences are required

• As 3 inserts need to be sequenced to resolve Taq polymerase errors, 9 n sequences are needed to resolve all error-free variant sequences at \(P_o=0.05 \)

• If relative incidence are not similar and a minor variant represent x% of the population, then n can be considered 100/x
Factors influencing the error frequency

1. Low MgCl$_2$ and dNTP concentrations reduce the error frequency

2. Increase of cycle number increase final error frequency:
 - errors in nested PCR are twice than PCR (approx. 1-2 errors per kbp)

3. Number of templates at the initial stage of PCR:
 - High number of template gives a reduced number of final number of errors

4. Presence or absence of a proofreading activity in the polymerase or in additional polymerase added to the reaction
Proofreading activity: 3’→5’ exonuclease

1. At stage 1 & 2: normal 5’→3’ polymerization

2. At stage 3 a wrong nucleotide is incorporated

3. At stage 4 the non hybridized nucleotide (mismatch) is recognized by 3’→5’ exonuclease activity and the misincorporated nucleotide is removed

4. At stage 5 the adequate nucleotide is incorporated
Examples of polymerases with proofreading activity

- DyNAzyme™ EXT DNA Polymerase (FINNZYME) : error rate 6×10^{-7} per base

- *Thermococcus litoralis Vent* polymerase (INVITROGEN): error rate 6×10^{-6} per base

- *Pyrococcus furiosus Pfu* polymerase : error rate 1.6×10^{-6} per base (NEB) (Lundberg *et al.*, 1991, *Gene*)

- *Pfx 50* polymerase (PROMEGA): error rate 4×10^{-7} per base
Case study: genetic diversity of alder yellow phytoplasmas in Europe (Malembic-Maher et al., 2008, IOM congress)

Alder Yellows (AldY) phytoplasma. AldY is a frequent disease of *Alnus glutinosa* in Europe. It is transmitted by the leafhopper *Oncopsis alni*.
Characterization by nested PCR and sequencing of the *map* gene

32 alder samples out of 55 with sequence ambiguities on chromatograms, superposition of nucleotide pics (up to 10 sites).

→ Reflects a mix of bacterial strains inside one tree.
• Amplification of gene *map* (673 bp) in PCR of 25 cycles with a proof reading polymerase (DyNAzyme™ EXT: error rate 6 x 10⁻⁷ per base), cloning and sequencing of 4 clones

Question: what is the probability of having a polymerase error in a clone sequence?

Answer: 6 x 10⁻⁷ x 25 cycles x 673 bases = 0.01 1 fragment out 100 will contain an error